栏目导航

香港六和开奖现场直播 118开奖现场直播 香港本期开奖结果直播 本港台最快开奖直播
香港六和开奖现场直播

当前位置:主页 > 香港六和开奖现场直播 >

C42排列组合该怎么算

发布日期:2019-09-03 19:08   来源:未知   阅读:

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  组合(combination)是一个数学名词。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。我们把有关求组合的个数的问题叫作组合问题。

  排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

  题目;在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?

  分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。

  第一类:这两个人都去当钳工,C(2,2)×C(5,2)×C(4,4)=10种;

  第二类:这两个人都去当车工,C(5,4)×C(2,2)×C(4,2)=30种;

  第三类:这两人既不去当钳工,也不去当车工C(5,4)×C(4,4)=5种。

  第四类:这两个人一个去当钳工、一个去当车工,C(2,1)×C(5,3)×C(4,3)=80种;

  第五类:这两个人一个去当钳工、另一个不去当车工,C(2,1)×C(5,3)×C(4,4)=20种;

  第六类:这两个人一个去当车工、另一个不去当钳工,C(5,4)×C(2,1)×C(4,3)=40种;

  组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。

  其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。

  ⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

  ⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

  ⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

  ⒈乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

  任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

  组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。

  其他排列与组合公式 从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk

  组合(combination)是一个数学名词。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。

  排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

  一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。

  真正严谨的阶乘定义应该为:对于数n,所有绝对值小于或等于n的同余数之积。称之为n的阶乘,即n!

  对于复数应该是指所有模n小于或等于│n│的同余数之积。。。对于任意实数n的规范表达式为:

  1772年,法国数学家范德蒙德(Vandermonde, A. - T.)以[n]p表示由n个不同的元素中每次取p个的排列数。

  瑞士数学家欧拉(Euler, L.)则于1771年以 及于1778年以 表示由n个不同元素中每次取出p个元素的组合数。

  1830年,英国数学家皮科克(Peacock, G)引入符号Cr表示n个元素中每次取r个的组合数。

  1869年或稍早些,剑桥的古德文以符号nPr 表示由n个元素中每次取r个元素的排列数,这用法亦延用至今。按此法,nPn便相当于n!。

  1880年,鲍茨(Potts , R.)以nCr及nPr分别表示由n个元素取出r个的组合数与排列数。

  1886年,惠特渥斯(Whit-worth, A. W.)用Cnr和Pnr表示同样的意义,他还用Rnr表示可重复的组合数。

  1899年,英国数学家、物理学家克里斯托尔(Chrystal,G.)以nPr,nCr分别表示由n个不同元素中每次取出r个不重复之元素的排列数与组合数,并以nHr表示相同意义下之可重复的排列数,这三种符号也通用至今。

  1904年,德国数学家内托(Netto, E.)为一本百科辞典所写的辞条中,以Arn表示上述nPr之意,以Crn表示上述nCr之意,后者亦也用符号(n r)表示。这些符号也一直用到现代。

  组合(combination)是一个数学名词。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。

  排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

  ⑴从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;

  ⑵限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;

  ⑶计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;

  ⑷计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。本港报马现场开奖结果